SPAM: Set Preference Algorithm for Multiobjective Optimization

نویسندگان

  • Eckart Zitzler
  • Lothar Thiele
  • Johannes Bader
چکیده

This paper pursues the idea of a general multiobjective optimizer that can be flexibly adapted to arbitrary user preferences— assuming that the goal is to approximate the Pareto-optimal set. It proposes the Set Preference Algorithm for Multiobjective Optimization (SPAM) the working principle of which is based on two observations: (i) current multiobjective evolutionary algorithms (MOEAs) can be regarded as hill climbers on set problems and (ii) specific user preferences are often (implicitly) expressed in terms of a binary relation on Pareto set approximations. SPAM realizes a (1 + 1)-strategy on the space of Pareto set approximations and can be used with any type of set preference relations, i.e., binary relations that define a total preorder on Pareto set approximations. The experimental results demonstrate for a range of set preference relations that SPAM provides full flexibility with respect to user preferences and is effective in optimizing according to the specified preferences. It thereby offers a new perspective on preference-guided multiobjective search.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Benson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality

‎In this paper‎, ‎we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints‎. ‎We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions‎. ‎We also fo...

متن کامل

An algorithm for approximating nondominated points of convex multiobjective optimization problems

‎In this paper‎, ‎we present an algorithm for generating approximate nondominated points of a multiobjective optimization problem (MOP)‎, ‎where the constraints and the objective functions are convex‎. ‎We provide outer and inner approximations of nondominated points and prove that inner approximations provide a set of approximate weakly nondominated points‎. ‎The proposed algorithm can be appl...

متن کامل

Hypervolume-Based Search for Multiobjective Optimization: Theory and Methods

xi Zusammenfassung xiii Statement of Contributions xv Acknowledgments xvii List of Symbols and Abbreviations xvii  Introduction  . Introductory Example . . . . . . . . . . . . . . . . . . . . . . . .  .. Multiobjective Problems . . . . . . . . . . . . . . . . . . .  .. Selecting the Best Solutions . . . . . . . . . . . . . . . . .  .. The Hypervolume Indicator . . . . . . . . . ...

متن کامل

A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm

In this paper, we discuss the idea of incorporating preference information into evolutionary multiobjective optimization and propose a preference-based evolutionary approach that can be used as an integral part of an interactive algorithm. One algorithm is proposed in the paper. At each iteration, the decision maker is asked to give preference information in terms of her/his reference point con...

متن کامل

A New Hybrid Approach of K-Nearest Neighbors Algorithm with Particle Swarm Optimization for E-Mail Spam Detection

Emails are one of the fastest economic communications. Increasing email users has caused the increase of spam in recent years. As we know, spam not only damages user’s profits, time-consuming and bandwidth, but also has become as a risk to efficiency, reliability, and security of a network. Spam developers are always trying to find ways to escape the existing filters therefore new filters to de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008